Channel

_images/ex_channel_0.png

Figure 31 Cross section of the pipe [CHEN2010].

This example has a cross section of a highly heterogeneous channel. This cross section geometry can be defined as shown in Fig. 31 [CHEN2010]. The isotropic material properties are given in Table 17. The layup is defined having a single layer with the thickness 0.001524 m. The result is shown in Table 19 and compared with those in [CHEN2010]. Complete input files can be found in examples\ex_channel\, including channel.xml, basepoints.dat, baselines.xml, materials.xml, and layups.xml.

_images/ex_channel_1.png

Figure 32 Base points, Base lines and Segments of the channel cross section.

_images/ex_channel_mesh.png

Figure 33 Meshed cross section viewed in Gmsh.

Table 17 Material properties
Name Type Density \(E\) \(\nu\)
    \(\mathrm{kg/m^3}\) \(10^9\ \mathrm{Pa}\)  
mtr1 isotropic 1068.69 206.843 0.49
Table 18 Layups
Name Layer Material Ply thickness Orientation Number of plies
      \(\mathrm{m}\) \(\circ\)  
layup1 1 mtr1 0.001524 0 1
Table 19 Results
\(\phantom{-}1.906\times 10^7\) \(0.0\) \(\phantom{-}0.0\) \(\phantom{-}0.0\) \(-4.779\times 10^4\) \(-1.325\times 10^5\)
\(\phantom{-}0.0\) \(2.804\times 10^6\) \(\phantom{-}2.417\times 10^5\) \(\phantom{-}2.128\times 10^4\) \(\phantom{-}0.0\) \(\phantom{-}0.0\)
\(\phantom{-}0.0\) \(2.417\times 10^5\) \(\phantom{-}2.146\times 10^6\) \(-7.663\times 10^3\) \(\phantom{-}0.0\) \(\phantom{-}0.0\)
\(\phantom{-}0.0\) \(2.128\times 10^4\) \(-7.663\times 10^3\) \(\phantom{-}2.091\times 10^2\) \(\phantom{-}0.0\) \(\phantom{-}0.0\)
\(-4.779\times 10^4\) \(0.0\) \(\phantom{-}0.0\) \(\phantom{-}0.0\) \(\phantom{-}2.011\times 10^3\) \(\phantom{-}9.104\times 10^2\)
\(-1.325\times 10^5\) \(0.0\) \(\phantom{-}0.0\) \(\phantom{-}0.0\) \(\phantom{-}9.104\times 10^2\) \(\phantom{-}1.946\times 10^3\)
Table 20 Results from reference [CHEN2010]
\(\phantom{-}1.903\times 10^7\) \(0.0\) \(\phantom{-}0.0\) \(\phantom{-}0.0\) \(-4.778\times 10^4\) \(-1.325\times 10^5\)
\(\phantom{-}0.0\) \(2.791\times 10^6\) \(\phantom{-}2.364\times 10^5\) \(\phantom{-}2.122\times 10^4\) \(\phantom{-}0.0\) \(\phantom{-}0.0\)
\(\phantom{-}0.0\) \(2.364\times 10^5\) \(\phantom{-}2.137\times 10^6\) \(-7.679\times 10^3\) \(\phantom{-}0.0\) \(\phantom{-}0.0\)
\(\phantom{-}0.0\) \(2.122\times 10^4\) \(-7.679\times 10^3\) \(\phantom{-}2.086\times 10^2\) \(\phantom{-}0.0\) \(\phantom{-}0.0\)
\(-4.778\times 10^4\) \(0.0\) \(\phantom{-}0.0\) \(\phantom{-}0.0\) \(\phantom{-}2.010\times 10^3\) \(\phantom{-}9.102\times 10^2\)
\(-1.325\times 10^5\) \(0.0\) \(\phantom{-}0.0\) \(\phantom{-}0.0\) \(\phantom{-}9.102\times 10^2\) \(\phantom{-}1.944\times 10^3\)