Airfoil
This example demonstrates the capability of building a cross section
having an airfoil shape, which is commonly seen on wind turbine blades
or helicopter rotor blades. This example is also studied in [CHEN2010].
A sketch of a cross section for a typical wind turbine blade is shown
in Fig. 37. The airfoil is MH 104
(http://m-selig.ae.illinois.edu/ads/coord_database.html#M). In this
example, the chord length \(CL=1.9\) m. The origin O is set to the
point at 1/4 of the chord. Twist angle \(\theta\) is \(0^\circ\).
There are two webs, whose right boundaries are at the 20% and 50% location
of the chord, respectively. Both low pressure and high pressure surfaces
have four segments. The dividing points between segments are listed in
Table 24. Materials are given in
Table 25 and layups are given in
Table 26. A complete \(6\times 6\)
stiffness matrix is given in Table 27.
Complete input files can be found in examples\ex_airfoil\
, including
mh104.xml
, basepoints.dat
, baselines.xml
, materials.xml
,
and layups.xml
.
Table 24 Dividing points
Between segments |
Low pressure surface |
High pressure surface |
|
\((x, y)\) |
\((x, y)\) |
1 and 2 |
(0.004053940, 0.011734800) |
(0.006824530, -0.009881650) |
2 and 3 |
(0.114739930, 0.074571970) |
(0.126956710, -0.047620490) |
3 and 4 |
(0.536615950, 0.070226120) |
(0.542952100, -0.044437080) |
Table 25 Material properties
Name |
Type |
Density |
\(E_{1}\) |
\(E_{2}\) |
\(E_{3}\) |
\(G_{12}\) |
\(G_{13}\) |
\(G_{23}\) |
\(\nu_{12}\) |
\(\nu_{13}\) |
\(\nu_{23}\) |
|
|
\(10^3\ \mathrm{kg/m^3}\) |
\(10^9\ \mathrm{Pa}\) |
\(10^9\ \mathrm{Pa}\) |
\(10^9\ \mathrm{Pa}\) |
\(10^9\ \mathrm{Pa}\) |
\(10^9\ \mathrm{Pa}\) |
\(10^9\ \mathrm{Pa}\) |
|
|
|
Uni-directional FRP |
orthotropic |
1.86 |
37.00 |
9.00 |
9.00 |
4.00 |
4.00 |
4.00 |
0.28 |
0.28 |
0.28 |
Double-bias FRP |
orthotropic |
1.83 |
10.30 |
10.30 |
10.30 |
8.00 |
8.00 |
8.00 |
0.30 |
0.30 |
0.30 |
Gelcoat |
orthotropic |
1.83 |
1e-8 |
1e-8 |
1e-8 |
1e-9 |
1e-9 |
1e-9 |
0.30 |
0.30 |
0.30 |
Nexus |
orthotropic |
1.664 |
10.30 |
10.30 |
10.30 |
8.00 |
8.00 |
8.00 |
0.30 |
0.30 |
0.30 |
Balsa |
orthotropic |
0.128 |
0.01 |
0.01 |
0.01 |
2e-4 |
2e-4 |
2e-4 |
0.30 |
0.30 |
0.30 |
Table 26 Layups
Name |
Layer |
Material |
Ply thickness |
Orientation |
Number of plies |
|
|
|
\(\mathrm{m}\) |
\(\circ\) |
|
layup_1 |
1 |
Gelcoat |
0.000381 |
0 |
1 |
|
2 |
Nexus |
0.00051 |
0 |
1 |
|
3 |
Double-bias FRP |
0.00053 |
20 |
18 |
layup_2 |
1 |
Gelcoat |
0.000381 |
0 |
1 |
|
2 |
Nexus |
0.00051 |
0 |
1 |
|
3 |
Double-bias FRP |
0.00053 |
20 |
33 |
layup_3 |
1 |
Gelcoat |
0.000381 |
0 |
1 |
|
2 |
Nexus |
0.00051 |
0 |
1 |
|
3 |
Double-bias FRP |
0.00053 |
20 |
17 |
|
4 |
Uni-directional FRP |
0.00053 |
30 |
38 |
|
5 |
Balsa |
0.003125 |
0 |
1 |
|
6 |
Uni-directional FRP |
0.00053 |
30 |
37 |
|
7 |
Double-bias FRP |
0.00053 |
20 |
16 |
layup_4 |
1 |
Gelcoat |
0.000381 |
0 |
1 |
|
2 |
Nexus |
0.00051 |
0 |
1 |
|
3 |
Double-bias FRP |
0.00053 |
20 |
17 |
|
4 |
Balsa |
0.003125 |
0 |
1 |
|
5 |
Double-bias FRP |
0.00053 |
0 |
16 |
layup_web |
1 |
Uni-directional FRP |
0.00053 |
0 |
38 |
|
2 |
Balsa |
0.003125 |
0 |
1 |
|
3 |
Uni-directional FRP |
0.00053 |
0 |
38 |
Table 27 Effective Timoshenko stiffness matrix
\(\phantom{-}2.395\times 10^9\) |
\(\phantom{-}1.588\times 10^6\) |
\(\phantom{-}7.215\times 10^6\) |
\(-3.358\times 10^7\) |
\(\phantom{-}6.993\times 10^7\) |
\(-5.556\times 10^8\) |
\(\phantom{-}1.588\times 10^6\) |
\(\phantom{-}4.307\times 10^8\) |
\(-3.609\times 10^6\) |
\(-1.777\times 10^7\) |
\(\phantom{-}1.507\times 10^7\) |
\(\phantom{-}2.652\times 10^5\) |
\(\phantom{-}7.215\times 10^6\) |
\(-3.609\times 10^6\) |
\(\phantom{-}2.828\times 10^7\) |
\(\phantom{-}8.440\times 10^5\) |
\(\phantom{-}2.983\times 10^5\) |
\(-5.260\times 10^6\) |
\(-3.358\times 10^7\) |
\(-1.777\times 10^7\) |
\(\phantom{-}8.440\times 10^5\) |
\(\phantom{-}2.236\times 10^7\) |
\(-2.024\times 10^6\) |
\(\phantom{-}2.202\times 10^6\) |
\(\phantom{-}6.993\times 10^7\) |
\(\phantom{-}1.507\times 10^7\) |
\(\phantom{-}2.983\times 10^5\) |
\(-2.024\times 10^6\) |
\(\phantom{-}2.144\times 10^7\) |
\(-9.137\times 10^6\) |
\(-5.556\times 10^8\) |
\(\phantom{-}2.652\times 10^5\) |
\(-5.260\times 10^6\) |
\(\phantom{-}2.202\times 10^6\) |
\(-9.137\times 10^6\) |
\(\phantom{-}4.823\times 10^8\) |
Table 28 Results from reference [CHEN2010]
\(\phantom{-}2.389\times 10^9\) |
\(\phantom{-}1.524\times 10^6\) |
\(\phantom{-}6.734\times 10^6\) |
\(-3.382\times 10^7\) |
\(-2.627\times 10^7\) |
\(-4.736\times 10^8\) |
\(\phantom{-}1.524\times 10^6\) |
\(\phantom{-}4.334\times 10^8\) |
\(-3.741\times 10^6\) |
\(-2.935\times 10^5\) |
\(\phantom{-}1.527\times 10^7\) |
\(\phantom{-}3.835\times 10^5\) |
\(\phantom{-}6.734\times 10^6\) |
\(-3.741\times 10^6\) |
\(\phantom{-}2.743\times 10^7\) |
\(-4.592\times 10^4\) |
\(-6.869\times 10^2\) |
\(-4.742\times 10^6\) |
\(-3.382\times 10^7\) |
\(-2.935\times 10^5\) |
\(-4.592\times 10^4\) |
\(\phantom{-}2.167\times 10^7\) |
\(-6.279\times 10^4\) |
\(\phantom{-}1.430\times 10^6\) |
\(-2.627\times 10^7\) |
\(\phantom{-}1.527\times 10^7\) |
\(-6.869\times 10^2\) |
\(-6.279\times 10^4\) |
\(\phantom{-}1.970\times 10^7\) |
\(\phantom{-}1.209\times 10^7\) |
\(-4.736\times 10^8\) |
\(\phantom{-}3.835\times 10^5\) |
\(-4.742\times 10^6\) |
\(\phantom{-}1.430\times 10^6\) |
\(\phantom{-}1.209\times 10^7\) |
\(\phantom{-}4.406\times 10^8\) |
Note
The errors between the result and the reference are caused by the difference of modeling of the trailing edge. If reduce the trailing edge skin to a single thin layer, then the difference between the trailing edge shapes is minimized, and the two resulting stiffness matrices are basically the same, as shown in Fig. 42.